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1. Introduction  

This research is an extension of a previous implementation of k-means clustering to both the 

rows (spatial) and columns (temporal) of a snapshot matrix.  Originally, reduced order models 

were constructed and run online using a fixed number of basis vectors corresponding to row-

column clusters of Burger’s equation solutions. The motivation behind the original row-column 

clustering method is to capture spatial discontinuities like shock waves. This research extends the 

previous method by building a matrix of row-column local basis vectors with descending 

singular values so that energy methods may be applied to choose the singular vectors to truncate. 

These extensions were made in order to prepare the row-clustering method for efficient 

implementation in codes where the entire matrix of local basis vectors is calculated offline, 

stored and reused during online computations. The updated implementation also takes advantage 

of the sparsity of the matrix and shows that runtime of the resulting ROM can be improved with 

the methods. 

 

2. Methods 

Instead of approximating the solution of interest in a fixed lower-dimensional subspace of local 

basis vectors constructed from the columns-only of a snapshot matrix, this method generates 

spatially and temporally local basis vectors from the columns and rows of a snapshot matrix. The 

solution space is partitioned into subregions in both space and time, and a local reduced-order 

basis is constructed and assigned to each subregion offline. While the singular value 

decomposition of a matrix will yield the best approximations for the entire matrix given data that 

clusters around a single solution vector or center, CFD datasets represent information that is far 

from linear in space and time. A singular value decomposition of the entire matrix does not take 

advantage of the non-linear structure and variation that can exists in the snapshot matrix.  

 

While this clustering method has been applied previously [1-2] the logic was applied in the 

temporal domain and has not yet been applied to the spatial domain, or in a combination of both 

the spatial and temporal domain. In the case of column-only (temporal) clustering, the matrix of 

snapshots is clustered and split along its columns, and then a truncated SVD is performed to 

generate a set of matrices of basis vectors V that represent the local bases:  

𝑢 = 𝑉𝑦 = {𝑉1 , 𝑉2} 𝑦 

In the case of spatial row clustering, each basis vector V has also been clustered along its rows. 

This may be represented as a single submatrix by creating a diagonal matrix from the 

submatrices of V as shown. Alternatively, the individual matrices could be saved as a set, which 

will speed up the computation, but implementation would be more complex. The method is 

currently implemented in the following vectorized form: 



𝑢 = 𝑉𝑦 =  [
𝑉1 0
0 𝑉2

] [
𝑦1

𝑦2
] 

In the case of spatial and temporal clustering, the basis vector V is split first along the columns, 

and then each submatrix is split along its rows as shown: 

𝑢 = 𝑉𝑦 = {𝑉1 , 𝑉2} 𝑦 

𝑢 = 𝑉𝑦 =  {[
𝑉11 0
0 𝑉12

] , [
𝑉21 0
0 𝑉22

]} [
𝑦1

𝑦2
] 

Because the row clustering is arranged in this vectorized form, the matrices V11 and V12 are 

reconstructed into V1 prior to the online update of the local ROB. This enables the method to be 

used with temporal-only clustering codes with little modification to the current setup of the ROM 

update. However, this implementation will not improve the computation time. This can only be 

expected if submatrices are handled separately or treated as sparse. Left in this form, the zero 

padding leads to a waste of energy. However, in python, the test code pymortestbed was 

modified to take advantage of the sparsity of the matrix by using the scipy.sparse libraries. The 

algorithms for construction of this set of local ROBs are outlined below. When applicable, the 

matrices are stored as sparse matrices, the dot products are defined as sparse, and the least-

squares solution is computed for a large, sparse, linear system of equations using 

scipy.sparse.linalg.lsqr. Ideally the code would store the sub-matrices separately, and the ROM 

code would be re-written to handle the new method. But using sparse implementation while 

leaving the rest of the method unchanged is a suitable halfway point to an ideal implementation 

of the method in a larger code, which will illustrate potential runtime improvement.  

 

Original Algorithm: Construct local ROBs in time and space 

Input: Snapshot matrix S, number 𝑁𝑅 ≥ 1 𝑎𝑛𝑑 𝑁𝐶 ≥ 1 of spatial and temporal clusters 

Output: Local ROBs 𝑉̅𝑗, where 𝑗 = 1, … , 𝑁𝑅 

1. Cluster the snapshot matrix S into number 𝑁𝐶 of pre-computed temporal clusters along 

the columns of S to create submatrices 𝑋𝑖 and store their centroids 𝑐𝑖 

2. For 𝑖 = 1, … , 𝑁𝐶  

a. Cluster the submatrix 𝑋𝑖 into number 𝑁𝑅 of pre-computed spatial clusters along 

the rows of 𝑋𝑖 to create submatrices 𝑋𝑖𝑗 

b. Perform the SVD of each matrix 

i. 𝑋𝑖𝑗 = 𝑈𝑖𝑗Σ𝑖𝑗𝑉𝑖𝑗
𝑇 

c. Choose the dimension of the ij-th ROB, 𝑘𝑖𝑗 

d. Truncate the first few left singular vectors 

i. 𝑉̅𝑖𝑗 =  𝑈𝑖𝑗(: ,0: 𝑘𝑖𝑗) 

e. Arrange local basis column vectors 𝑉𝑖̅ in vectorized form 

i. 𝑉𝑖̅ =  [
𝑉𝑖1 0
0 𝑉𝑖2

] 



f. Perform local ROM updates with column-only local basis setup 

 

Updated Algorithm: Construct sparse local ROBs in time and space with descending singular 

values 

Input: Snapshot matrix S, number 𝑁𝑅 ≥ 1 𝑎𝑛𝑑 𝑁𝐶 ≥ 1 of spatial and temporal clusters 

Output: Local ROBs 𝑉̅𝑗, where 𝑗 = 1, … , 𝑁𝑅 

1. Cluster the snapshot matrix S into number 𝑁𝐶 of pre-computed temporal clusters along 

the columns of S to create submatrices 𝑋𝑖 and store their centroids 𝑐𝑖 

2. For 𝑖 = 1, … , 𝑁𝐶  

a. Cluster the submatrix 𝑋𝑖 into number 𝑁𝑅 of pre-computed spatial clusters along 

the rows of 𝑋𝑖 to create submatrices 𝑋𝑖𝑗 

b. Perform the SVD of each matrix and save both V, the singular vectors, and Σ, the 

singular values. 

i. 𝑋𝑖𝑗 = 𝑈𝑖𝑗Σ𝑖𝑗𝑉𝑖𝑗
𝑇 

c. Arrange local basis column vectors 𝑉𝑖̅ in vectorized form 

i. 𝑈𝑖̅ =  [
𝑈𝑖1 0
0 𝑈𝑖2

], Σ𝑖 =  [
Σ𝑖1

Σ𝑖2
] 

d. Sort Σ𝑖 in descending order and save the indices in vector of indices, ind 

e. Sort 𝑈𝑖̅ according to the indices, ind 

f. Choose the dimension of the i-th ROB, 𝑘𝑖 

g. Truncate the first few left singular vectors 

i. 𝑉̅𝑖 =  𝑈̅𝑖(: ,0: 𝑘𝑖) 

h. Perform local ROM updates using scipy sparse libraries 

 

3. Results for Original Algorithm 

The implementation of row-column clustering was found to substantially improve the quality of 

the ROBs for the Burger’s equation in the proximity of the shock wave discontinuity when using 

a fixed number of basis vectors for each for row cluster equal to the number of basis vectors 

saved in the column-only solution. Figure 2 shows the damping of the Gibbs’ oscillations for the 

case of a 10 column clusters on the data with an increasing a number of row clusters from 1 

(column-only clustering case) to 10 row clusters.  



 

Figure 2: Reduction of Gibbs’ oscillations due to row-column clustering 

Additionally, Figure 3a illustrates the reduction in RMS error between the original snapshot and 

the projections as the number of column clusters are increased, given a fixed number of row 

clusters. Figure 3b illustrates the reduction in RMS error as the number of row clusters is 

increased, given a fixed number of column clusters. Row-column clustering is clearly an 

improvement for both conditions. As before, this method saves the same number of basis vectors 

for each row cluster that had been saved in the column-only clustering method.  

(a) (b)  

Figure 3: RMS error reduction with increasing spatial (row) or temporal (column) clusters given 

fixed number of clusters along the other dimension of the matrix 

The figure below shows the change in modeling error for the Burger’s equation test case after 

implementing temporal, spatial, and temporal/spatial clustering in the same online ROM code. 

Each figure its labeled with the number of spatial or temporal clusters used in implementation. 

For each dataset, the same number of left singular vectors, 10, was used from each singular value 

decomposition to construct the local bases. 



 

Figure 4: (a) 4 temporal clusters  (b) 4 spatial clusters (c) 4 spatial and 4 temporal clusters 

The combination of temporal and spatial clustering outperforms the other two clustering 

methods. The shockwave discontinuity is captured the best of the three methods. Also, the 

spatial-only clustering appears to perform far worse than the other two. However, in the spatial-

only clustering, only 10 left singular vectors are saved across the entire matrix S. Therefore, this 

simulation is using much less data than the temporal-only and spatial-temporal simulations, 

which are saving 40 total left singular vectors over the entire matrix. This imbalance is handled 

with n the updated algorithm results to follow, which will show a back-to-back comparison of 10 

vs. 10 total vectors saved. 

At this point, the temporal clustering and spatial/temporal clustering are truly a back-to-back 

comparison using the same amount of saved information, only the implementation will be slower 

since the sparsity has not yet been handled appropriately for these cases. The spatial clustering-

only in this case is also expected to be much worse because less information is being stored and 

utilized. These preliminary results confirm that not only is the projection error improved using 

spatial-temporal clustering, but the online model reduction works with the method, and is better 

able to capture the range of Burger’s equation solutions while storing the same amount of data as 

temporal-only methods.  

 

4. Results for Updated Algorithm 

The previous results showed that improvement in the accuracy of the solution was possible, but it 

did not take advantage of matrix sparsity, and the method wasn’t feasible for implementation in a 

code that calculated the SVD offline and truncated it online. So, in addition to these results, it 

was necessary to implement the method in a way that saved all singular vectors after performing 

the SVD, so that V could be truncated later.  

The results show that very little change in the RMS error in observed in this implementation, in 

spite of the fact that the same number of total basis vectors are saved in this scenario. This is 

unexpected, since it was assumed that a singular vectors containing 30-98% zeros would not 

perform as well as the same-sized matrix of basis vectors with no sparsity, given the same 

number of total singular vectors saved. Therefore, the Figure 4 is a surprising and promising 

result for the usefulness and robustness of the method under different scenarios and specific 

implementations. Meanwhile, the figure also shows that runtime is considerably improved using 

this method, as expected. 



 

Figure 4: Runtime and RMS Error for python implementation that both takes advantage of 

matrix sparsity and truncates the matrix only during the online computation 

 

5. Future work 

The next step is to utilize the code as currently implemented in python to extend the method for 

use in the aero-f code. Many different variations are possible and choices need to be made for 

implementing the method efficiently in aero-f. The results so far show that the row-column 

clustering method will improve the code by improving the runtime, accuracy, or both, depending 

on the specific choices made in implementation.  
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