
The most relevant characteristic in a ROMs is the amount of energy contained in the basis. Typically the size of the 
basis is chosen by truncating at the number of vectors for which the singular values begin to drop quickly.

For any chosen energy content, the RMS error of the ROM remains constant while the ROM runtime is reduced by a 
factor of 3 to 7. A variation of the method can be used to hold the runtime constant while reducing RMS error. 

Points in space, corresponding to a rows of the matrix A, can also be clustered, separating spatial 
regions that show similar behavior over time – roughly identifying flow features.

Expected Benefit #1: Spatial Locality. Different spatial flow features are identified and modeled, 
improving accuracy/efficiency for spatially varying phenomena (i.e. steady-state shocks).

Expected Benefit #2: Sparsification. Can choose any option in between (Scenario 1) Faster 
computation time for a fixed accuracy and using the same basis size and (Scenario 2) Greater 
accuracy for a fixed computation time using an increased basis size.

Similar snapshots are grouped together using the k-means algorithm. Within each column 
cluster, the ROM solves within a basis built only from the simulations most similar to the  
current state, further reducing the dimensionality. Matrix A columns correspond to states. 

v

ROMs limit the degrees of freedom in a numerical experiment 
in order to run faster simulations using knowledge of the 
problem and knowledge gained from previous simulations.

ROMs solve the original governing equations, but project them 
into a smaller state space, called a basis, reducing simulation 
time possibly by several orders of magnitude. 
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Reduced Order Models

Column Clustered Basis

Results - Row Only Clustered Basis 

Results – Row + Column Clustered Basis
The Burgers’ equation test case for ROMs is a 1D 
application of an initial-boundary-value problem that 
models the movement of a shockwave in an inviscid fluid. 

Numerical experiments can tell you how a parameter will 
influence your design’s mechanical or aerodynamic 
performance.  For example, the local changes to fan blade 
curvature shown may have a large influence on the flow and 
on parameters of interest.

But full order simulations can be very slow!
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𝑤𝑛+1 = 𝑤𝑛 + ∆𝑡 𝐹(𝑤𝑛)

𝑤 ~ 𝑽𝑦

𝑦𝑛+1 = 𝑦𝑛 + ∆𝑡 𝑽𝑇𝐹(𝑽𝑦𝑛)

Start with a PDE

Discretize

Reduce dimensionality

𝑤 ∈ ℝ𝑀,  𝑉 ∈ ℝ𝑀×𝑛 ,  𝑦 ∈ ℝ𝑛

What is a Basis?

A ∈ ℝ𝑀×𝑁

𝐴 = 𝑈Σ𝑉𝑇

𝑽 = 𝑈𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑

Perform SVD . Truncate and 
save first n left singular 

vectors V ∈ ℝ𝑀×𝑛 to capture 
the desired energy content.

– New Method –
Row Clustered Basis
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How do you 
pick a basis V?

Given a snapshot matrix A of with full order model results 
stored in the columns, a basis V is constructed.
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Scenario 1

Use the same number of basis 
vectors with a same-sized 

sparser matrix while storing 
fewer nonzero values, 
similar accuracy with 

faster computation time.

Scenario 1

Scenario 2

Scenario 2

Use more basis vectors with 
a larger sparser matrix while 
storing the same number of 

non-zero values, 
greater accuracy with 

similar computation time.

ℝ𝑁

𝑀1 + 𝑀2 + 𝑀3 = 𝑀

V forms a subspace of dim 𝑛 in ℝ𝑀

cluster SVD store

𝑛1 + 𝑛2 + 𝑛3 ≤ 𝑁

ℝ𝑀

𝑛1 ≪ 𝑀

𝑛2 ≪ 𝑀

𝑛3 ≪ 𝑀

99.996% energy content 99.9996% energy content 99.99….96% energy content99.96% energy content

99.99….96% energy content99.9996% energy content

No Row Clusters 5 Row Clusters

𝑛 ≪ 𝑀

col clusters = 10, basis size = 20

20 Row Clusters

99.99….96% energy content 99.99….96% energy content 99.99….96% energy content

very 
skinny

i.e.
1000000 

x 1000

still
very 

skinny
i.e.

1000000 
x 3000


