A SPATIAL CLUSTERING ALGORITHM FOR CONSTRUCTING
LOCAL REDUCED-ORDER BASES FOR NONLINEAR
MODEL REDUCTION
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NONLINEAR MODEL REDUCTION

3% Highly nonlinear High-Dimensional computational Models (HDMs)
for dynamical systems

- Computational Fluid Dynamics (CFD)

- Computational Structural Dynamics (CSD)

- Computational physics or partial differential equation-based
computational models in general

¥ Characteristics

- feature different physical regimes

- feature moving features (discontinuities, fronts, shocks, ...)

- feature multiple spatial and temporal scales

- their trajectories can explore many regions of the state-space

- their reduction using a global Reduced-Order Basis
(ROB) is either inefficient or unfeasible



LOCAL ROBs

% Approximation in a lower-dimensional subspace generated by local
ROBs [Amsallem, Zahr & Farhat, 2012]

- locality on the solution manifold
(not necessarily space or time)

- local ROBs tailored to distinct
physical regimes
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state-space

“column” clustering of
the matrix of solution snapshots



COLUMN CLUSTERING
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COLUMN CLUSTERING

3% Benefits of column clustering

- groups similar states together =» identifies distinct regimes
- reduces dimensionality in each cluster of the solution manifold.
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SPATIAL/ROW CLUSTERING

3% Spatial (or “row”) clustering: basic idea
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SPATIAL/ROW CLUSTERING

3% Spatial (or “row”) clustering: sparsification property
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EXPECTED BENEFITS

3% Locality in the physical space

- improved accuracy/efficiency for local/localized phenomena
(i.e., steady-state shocks)

3% Sparsification property
- reduced online cost for a given ROB size and therefore for

a given accuracy (scenario 1)
ey = n, = n3= ng/3 = ng+n, +n;=n,

- increased ROB size and therefore increased accuracy for a
given online cost (scenario 2)

et ng =mn,=nz3=n, = n +n,+n;=3n,



SPATIAL/ROW CLUSTERING

3% Spatial (or “row”) clustering: relationship to column clustering

- an alternative approach to “column” clustering
o locality in the physical space instead of the solution
manifold = identifies local/localization phenomena
such as fronts, contacts, shocks, discontinuities, and
shear bands, to name a few

- a complementary approach to “column” clustering
o reduces computational complexity by sparsifying a ROB
instead of reducing dimensionality
o can be combined with column clustering to reduce both
dimensionality and computational complexity
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3% Semi-discretization by the finite volume method
- Godunov’s scheme (M = 1000) with 501 time steps

% Moving shock = expected benefits of spatial clustering are
those due to the sparsification property

% Accuracy metric: RMS error of the reduced model solution



APPLICATION: SHOCK PROPAGATION

3% Inviscid Burger problem in 1D

500 snapshots, 1 cluster >00 snapshots
5 column clusters
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MOST RELEVANT CHARACTERISTIC

% Online accuracy vs retained energy content of the singular values
99.96% energy content 99.996% energy content
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SPATIAL/ROW CLUSTERING ONLY

3% Scenario defined by truncation of singular values at 99.9996 %

ROM Solutions Runtime and RMS Error
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SPATIAL/ROW CLUSTERING ONLY

3% Scenario with truncation at ~380 singular values (99.999...99 %)
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ROW-COLUMN CLUSTERING

% Scenario with n, = 10 and roughly the same online cost

10 row clusters 10 column clusters
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CONCLUSIONS

% In the context of local ROBs for nonlinear model reduction,
spatial (or “row”) clustering

- is an effective approach for sparsifying a ROB and therefore
accelerating online reduced-order model simulations

- is a more effective alternative to column clustering for
problems with local/localized phenomena

- can be combined with column clustering to achieve

both dimensional reduction and sparsification, and therefore
maximize computational efficicency for some problems

% For a simple inviscid Burger problem in 1D and a simple
implementation, row clustering has accelerated online nonlinear
reduced-order model simulations by a factor ranging between 3
and 7 — larger speedups are expected for 3D problems and an

optimized implementation



