A SPATIAL CLUSTERING ALGORITHM FOR CONSTRUCTING LOCAL REDUCED-ORDER BASES FOR NONLINEAR MODEL REDUCTION

Tina White², Charbel Farhat^{1,2,3} and P. Avery ¹

¹ Department of Aeronautics and Astronautics

²Department of Mechanical Engineering

³ Institute for Computational and Mathematical Engineering

<u>Acknowledgements</u>: DARPA-EQUIPS, DOE CSGF Fellowship

NONLINEAR MODEL REDUCTION

- * Highly nonlinear High-Dimensional computational Models (HDMs) for dynamical systems
 - Computational Fluid Dynamics (CFD)
 - Computational Structural Dynamics (CSD)
 - Computational physics or partial differential equation-based computational models in general

※ Characteristics

- feature different physical regimes
- feature moving features (discontinuities, fronts, shocks, ...)
- feature multiple spatial and temporal scales
- their trajectories can explore many regions of the state-space

their reduction using a global Reduced-Order Basis (ROB) is either inefficient or unfeasible

LOCAL ROBs

- * Approximation in a lower-dimensional subspace generated by local ROBs [Amsallem, Zahr & Farhat, 2012]
 - locality on the <u>solution manifold</u> (not necessarily space or time)
 - local ROBs tailored to distinct physical regimes

"column" clustering of the matrix of solution snapshots

COLUMN CLUSTERING

* Column clustering using, for example, the k-means algorithm

COLUMN CLUSTERING

- Benefits of column clustering
 - groups similar states together → identifies <u>distinct regimes</u>
 - reduces dimensionality in each cluster of the solution manifold.

$$w \sim V_1 y$$

$$w \sim V_2 y$$

$$w \sim V_3 y$$

$$n_1 \ll M$$
 $n_2 \ll M$
 $n_3 \ll M$

SPATIAL/ROW CLUSTERING

ℜ Spatial (or "row") clustering: basic idea

SPATIAL/ROW CLUSTERING

ℜ Spatial (or "row") clustering: sparsification property

 $S \in \mathbb{R}^{M \times N}$

sparsified ROB based on row clustering (local modes)

compact storage

EXPECTED BENEFITS

- Locality in the physical space
 - improved accuracy/efficiency for local/localized phenomena (i.e., steady-state shocks)
- Sparsification property
 - reduced online cost for a given ROB size and therefore for a given accuracy (scenario 1)

i.e.:
$$n_1 = n_2 = n_3 = n_g/3 \implies n_1 + n_2 + n_3 = n_g$$

- increased ROB size and therefore increased accuracy for a given online cost (scenario 2)

i.e.:
$$n_1 = n_2 = n_3 = n_g$$
 \longrightarrow $n_1 + n_2 + n_3 = 3n_g$

SPATIAL/ROW CLUSTERING

- ※ Spatial (or "row") clustering: relationship to column clustering.
 - an alternative approach to "column" clustering
 locality in the physical space instead of the solution manifold → identifies <u>local/localization phenomena</u> such as fronts, contacts, shocks, discontinuities, and shear bands, to name a few
 - a complementary approach to "column" clustering
 o <u>reduces computational complexity</u> by sparsifying a ROB instead of reducing dimensionality
 - can be combined with column clustering to <u>reduce both</u>
 <u>dimensionality and computational complexity</u>

APPLICATION: SHOCK PROPAGATION

Inviscid Burgers' problem in 1D

$$\frac{\partial U}{\partial t} + \frac{1}{2} \frac{\partial U^2}{\partial x} = 0$$

$$U(0, t) = 3, \quad U(x, 0) = 1$$

- * Semi-discretization by the finite volume method
 - Godunov's scheme (M=1000) with 501 time steps
- Moving shock → expected benefits of spatial clustering are those due to the sparsification property
- * Accuracy metric: RMS error of the reduced model solution

APPLICATION: SHOCK PROPAGATION

Inviscid Burger problem in 1D

500 snapshots 5 column clusters

MOST RELEVANT CHARACTERISTIC

Online accuracy vs retained energy content of the singular values

SPATIAL/ROW CLUSTERING ONLY

★ Scenario defined by truncation of singular values at 99.9996 %

reduction of online CPU time by a factor ~3 without a significant loss of accuracy

SPATIAL/ROW CLUSTERING ONLY

Scenario with truncation at ~380 singular values (99.999...99 %)

a factor 7 without a significant loss of accuracy

ROW-COLUMN CLUSTERING

★ Scenario with number of column clusters = 5 at 99.99999999996 %

ROW-COLUMN CLUSTERING

lpha Scenario with $n_g=10$ and roughly the same online cost

significant accuracy improvement

CONCLUSIONS

- In the context of local ROBs for nonlinear model reduction, spatial (or "row") clustering
 - is an effective approach for sparsifying a ROB and therefore accelerating online reduced-order model simulations
 - is a more effective alternative to column clustering for problems with local/localized phenomena
 - can be combined with column clustering to achieve both dimensional reduction and sparsification, and therefore maximize computational efficieency for some problems
- *For a simple inviscid Burger problem in 1D and a simple implementation, row clustering has accelerated online nonlinear reduced-order model simulations by a factor ranging between 3 and 7 larger speedups are expected for 3D problems and an optimized implementation