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Abstract

Projection-based model order reduction (PMOR) methods based on linear or affine approximation sub-
spaces accelerate numerical predictions by reducing the dimensionality of the underlying computational
models. The state of the art of PMOR includes approximation methods based on state-local subspaces
– that is, subspaces associated with different regions of the solution manifold – and methods based on
adaptive reduced-order bases. For challenging applications such as those associated with highly nonlinear
problems, such methods accelerate traditional PMOR by controling the dimension of the reduced-order
basis and associated projection-based reduced-order model (PROM). This paper proposes an alterna-
tive as well as complementary approach for accelerating PMOR based on introducing sparsity into the
reduced-order basis, in order to enhance the computational efficiency of the associated PROM. Specif-
ically, the proposed approach introduces sparsity in PMOR by partitioning the computational domain
rather than, or in addition to, the solution manifold, and therefore leads to the concept of a space-local
reduced-order basis. This concept is compatible with both concepts of a state-local reduced-order basis
and hyperreduction. It is demonstrated for two computational fluid dynamics problems in turbulent
flow applications. Acceleration factors of the order of 1.5 relative to traditional PMOR and CPU time
speedup factors of several orders of magnitude relative to high-dimensional models are reported.

Keywords: clustering, domain decomposition, machine learning, nonlinear model reduction, proper
orthogonal decomposition

1. Introduction

Projection-based model order reduction (PMOR) methods are powerful techniques for reducing the
dimensionality of parametric computational models and therefore their complexity. Their outcomes are
referred to as projection-based reduced-order models (PROM)s. A well-designed PROM accelerates a
parametric simulation grounded in a high-fidelity, high-dimensional computational model (HDM), by
finding the best approximate solution in a lower-dimensional approximation manifold. By solving a
much smaller set of equations formulated in terms of generalized coordinates, a PROM can produce
an accurate solution several orders of magnitude faster than the underlying HDM. Because of this
combination of accuracy and speed, PMOR is an enabling technology for many time-critical applications
where parametric HDMs are often avoided or not even considered, when a single numerical simulation
may require hours, days, or longer on expensive many-core computers. This is the case, for example,
for simulation-based multidisciplinary design analysis and optimization, real-time interactive design,
statistical analyses for uncertainty quantification, and real-time model predictive control.

During the last decade, the state of the art of nonlinear PMOR has significantly advanced. It has
improved in robustness, online speed, and accuracy [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. For many PMOR
methods and many applications however, the offline cost associated with training a PROM remains
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excessive today, if not prohibitive; and the further acceleration of the online execution of a PROM
continues to be desired. Recent effort on enhancing the performance of a PROM has focused on localized
approximations, online adaptations, and nonlinear approximations for reducing further the dimension
of the underlying reduced-order basis (ROB) [2, 11, 12, 13, 14, 15, 16, 17, 18, 9, 10], particularly for
applications such as convection-dominated turbulent flows that are challenged by the Kolmogorov n-
width [19] issue. Among these developments, the methods grounded in localized approximations such
as piecewise affine approximations [2, 9] are referred to in this paper as PMOR methods with state-
local ROBs, because the associated ROBs are local in state space. This is in contrast with the PMOR
approach proposed in this paper, where a ROB has localized components in the ordinary x−y−z space.
However, both concepts are complementary and therefore can be combined.

Most current PMOR approaches are motivated by the reduction of the dimensionality of a ROB,
in order to accelerate the performance of the associated PROM. However, the costs of most operations
involving a ROB or its PROM do not necessarily scale directly with the dimension of these entities,
if the ROB is sparse and stored as a sparse matrix. In this case, many operations such as matrix-
matrix and matrix-vector multiplications scale with the number of nonzero entries of the ROB, rather
than its dimension. Hence, within the context of nonlinear PMOR, this paper explores an approach
for sparsifying a ROB even at the cost of increasing its dimension, in order to construct a faster but
otherwise similarly accurate nonlinear PROM. The main idea is to introduce sparsity into a ROB by
performing a nonoverlapping domain decomposition – or more specifically, a mesh partitioning – and
constructing it from a set of locally supported basis components, each covering a different region of the
computational domain – or more specifically, a different partition of the associated computational mesh.
Hence, while state-local ROBs exploit the fact that locality in state space may allow smaller ROBs to
perform well, the proposed approach exploits yet another form of locality common to many computational
physics simulations, namely, spatial locality, to accelerate further PROM-based computations. It also
exploits the fact that in many computational physics applications, the solution of a problem of interest
may exhibit different behaviors in different regions of the computational domain. For example, in
computational fluid dynamics (CFD), shocks, boundary layers, shock-boundary-layer interactions, flow
separation, flames, and turbulent wakes may occur in different regions of the computational domain,
where the various flow regimes may evolve at different timescales, and therefore the solution may be
approximated best by different subspaces or approximation manifolds represented by independent ROBs.
In such applications, a ROB that is constructed region-by-region has local spatial support and therefore
is sparse. It typically requires a slightly larger dimensionality to deliver the same accuracy as a dense
counterpart, for a reason that will be explained later: however, it may still lead to a faster PROM,
thanks to sparse data structures and computations.

For applications where domain decomposition (or substructuring) is performed for various reasons,
the collection of solution snapshots may be easier at the subdomain rather than domain level (for
example, see [20, 21, 22]): in this case, the PMOR approach proposed in this paper is most suitable.
In the limit where the dimension of a basis component associated with a region of the computational
domain is set to the dimension of the trace of the solution on the corresponding submesh, the proposed
concept of a space-local ROB recovers the idea of performing a domain decomposition and considering
PROMs in some subdomains and HDMs in others, as appropriate [23, 24, 25, 26]. However, it does not
necessarily recover the optimal implementation associated with this idea.

The work described in this paper is motivated by unsteady, convection-dominated, turbulent flow
problems. For such problems, the Least Squares Petrov-Galerkin (LSPG) method [4, 5] equipped with
the energy-conserving sampling and weighting (ECSW) hyperreduction method is a state-of-the-art
nonlinear PMOR method [8, 9]. For these reasons, the proposed concept of a space-local ROB is fully
developed here in the contexts of implicit time-discretization and nonlinear LSPG equipped with ECSW.
However, it is emphasized that the main contributions of this paper are equally applicable to the Galerkin
framework for PMOR and to second-order dynamical systems, including nonlinear structural dynamics
problems with configuration-dependent mass matrices, nonlinear damping forces, and configuration-
dependent external forces/moments. Furthermore, it is also emphasized that the main ideas presented
in this paper and the associated numerical algorithms are independent from the parametric setting;
and that their relative merits in terms of wall-clock time reduction for a desired level of accuracy can
be assessed independently of any such setting. Hence, even though it is acknowledged that PMOR is

2



primarily beneficial for parametric problems, the proposed concept of a space-local ROB is presented
and evaluated in this paper without reference to any parameter except time, which can be interpreted
as the parameter of a one-dimensional parameter space.

The remainder of this paper is organized as follows. Section 2 reviews nonlinear PMOR, including
Galerkin and Petrov-Galerkin projections, and proper orthogonal decomposition (POD) by the method
of solution snapshots – or equivalently, the singular value decomposition (SVD) method – for the compu-
tation of ROBs. This section also comments on various aspects of the computational cost associated with
performing nonlinear PMOR, particularly in the contexts specified above. Then, Section 3 introduces the
concept of a space-local ROB, explains its computational benefits, highlights some of its properties, and
presents numerical algorithms for computing a space-local ROB and exploiting it in PMOR operations.
Section 4 describes how to combine space-local and state-local ROBs and incorporate hyperreduction
in the resulting PMOR method to maximize computational speed. Section 5 demonstrates performance
improvements for two representative applications. The first one is characterized by a relatively small-
scale, two-dimensional, academic CFD problem designed to highlight the benefits of spatial locality in
PMOR: it has the merit of being easily reproducible by the interested reader. The second application
focuses on a larger-scale application that is more representative of industrical CFD problems. It high-
lights the benefits of combining state-local and space-local ROBs, and hyperreduction to squeeze the
most performance out of a nonlinear PROM. Section 6 concludes this paper.

2. Nonlinear projection-based model order reduction

The focus of this paper is set on µ-parametric, time-dependent, semi-discrete, nonlinear dynamical
systems of the form

M(µ)u̇(t;µ) + f (u(t;µ);µ) = g(t;µ)
u(0;µ) = u0(µ) (1)

where t ∈ [0, Tf ] denotes time and 0 and Tf specify the simulation time-interval of interest; the dot
denotes the derivative with respect to time; µ ∈ P ⊂ Rp denotes a p-dimensional vector of parameters
and P is the bounded parameter space of interest (in this work, this space is limited to the time-interval
[0, Tf ] for the reasons explained in Section 1); u(t;µ) ∈ RN is the high-dimensional, time-dependent,
solution vector and u0(t;µ) denotes its initial condition; M(µ) ∈ RN×N is the symmetric positive definite
(SPD) mass matrix; f(u(t;µ);µ) ∈ RN is a nonlinear function arising from the semi-discretization in
space of the governing partial differential equation (PDE); and g(t;µ) ∈ RN is a time-dependent source
term vector that may be zero in some applications. Model (1)

(
or problem (1)

)
is referred to as the

high-dimensional model (HDM): it may originate from the semi-discretization (spatial discretization)
of a PDE with temporal derivatives of any order, because a higher-order ordinary differential equation
(ODE) can be rewritten as a system of first-order ODEs by expanding the state vector u(t;µ). Hence,
model (1) is sufficiently general to cover not only first-order systems of conservation laws, but also
second-order systems in structural dynamics and wave propagation, as well as many other systems.

For many applications, N is large enough to be prohibitive for computing the solution u(t;µ) at
many parameter points µ (e.g. design analysis and optimization). Traditional PMOR accelerates the
solution of problem (1) by seeking an approximate representation of u(t;µ) in a low-dimensional affine
subspace, which can be written as

u(t;µ) ≈ ũ(t;µ) = u0 + Vy(t;µ), ∀(t,µ) ∈ [0, Tf ]× P (2)

where u0 ∈ RN is a fixed vector defining an affine offset for the approximation subspace represented
by the right ROB V ∈ RN×n, y ∈ Rn is the vector of reduced-order (or generalized) coordinates of
the representation of the approximation ũ(t;µ) in the subspace, and n � N . Given an approximation
subspace, it is usually desirable to choose a basis that is orthonormal – that is VTQV = In, where
superscript T denotes the transpose operation, Q ∈ RN×N is a SPD matrix (e.g. Q = M or Q = In),
and In is the size-n identity matrix. In this paper, all right ROBs V are constructed to be orthonormal
in the sense VTV = In.
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Inserting the approximation (2) into model (1) and writing the resulting equation in residual form
gives

r (u0 + Vy(t;µ),Vẏ(t,µ), t;µ) = M(µ)Vẏ(t;µ) + f(u0 + Vy(t;µ);µ)− g(t;µ) = 0 (3)

where r (u0 + Vy(t;µ),Vẏ(t,µ), t;µ) ∈ RN is the value of the high-dimensional residual for a given
value of the vector of generalized coordinates y(t;µ). Equation (3) is overdetermined as it is a system
of N equations with n � N unknowns: hence, it may not admit an exact solution. It can be solved in
a least-squares sense, or transformed into a square system using left and right projections.

2.1. Galerkin and Petrov-Galerkin projections
Discretizing (3) in time and projecting it onto the space spanned by a left ROB W ∈ RN×n gives

rn(y(tm;µ), tm;µ) = WT r(u0 + Vy(t;µ), tm;µ) = 0 (4)

where rn(y(tm;µ), tm;µ) ∈ Rn is the reduced-order residual and tm is the time-instance at step m
(e.g. in the case of a uniform time-step ∆t, tm = m∆t). Equation (4) is a square nonlinear system of
n equations with n unknowns: it can be solved by Newton’s method or a variant. In the absence of
some special structure (e.g. a low-order polynomial structure) that allows the precomputation of those
contributions to the evaluation of the right-hand side of (4) whose complexity scales with the large
dimension N of the HDM, it may be necessary to compute rn ∈ Rn by evaluating first r ∈ RN , then
multiplying it by W ∈ RN×n. In this case, solving (4) will incur computational costs that scale with
N unless equation (4) is hyperreduced (see Section 4) – that is, it is further approximated so that the
complexity of its solution is independent of N .

The case where W = V results in a Galerkin projection. Such a projection is suitable when
the semi-discretization of the underlying PDE by a Galerkin projection is also suitable. Otherwise,
a Petrov-Galerkin projection, where W 6= V, is more appropriate [27]: for example, this is the case for
convection-dominated flow problems [8] for which the nonlinear LSPG method [4, 5] has been shown
to be particularly robust and efficient [8, 9]. For this reason, and because LSPG is sufficiently general
(it incorporates Galerkin projection as a particular case), the contributions of this paper are presented
in the setting of this nonlinear PMOR method. However, it is emphasized again that they are equally
applicable in many other PMOR settings.

The nonlinear LSPG method can be simply explained by examining the iterates arising from the
application of the Newton algorithm to the solution of (4). Each k-th iterate can be written as

W(k)TJ(k)Vp(k) = −W(k)T r(k) (5)
y(k+1) = y(k) + β(k)p(k) (6)

where all arguments of all quantities have been dropped for notational simplicity; the superscript (k)
designates the k-th iteration; the left ROB W(k) (u0 + Vy(k)(tm;µ), tm;µ

)
∈ RN×n is allowed to be

a function of the solution iterate; J(k) (u0 + Vy(k)(tm;µ), tm;µ
)
∈ RN×N is the Jacobian of the high-

dimensional residual; p(k) ∈ Rn is the Newton step direction; r(k) (u0 + Vy(k)(tm;µ), tm;µ
)
∈ RN is

the residual at iteration k; and β(k) is the step length at iteration k and can be determined using a line
search or set by default to 1.

If by design, the left ROB is chosen to be iteration-dependent and constructed as W(k) = J(k)V, it
can be shown that:

• The Newton iterates (5)-(6) become those of the Gauss-Newton method applied to the minimization
of the Eucledian norm of the high-dimensional residual (3) over y ∈ Rn.

• The left ROB W(k) minimizes the difference in the J(k)TJ(k) norm between each low-order ap-
proximate Newton step direction Vp(k) and its high-dimensional counterpart J(k)−1r(k).
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In this case, equation (5) becomes the normal equation for a linear least-squares problem, the Newton
iterations associated with LSPG can be rewritten as

p(k) = arg min
a∈Rn

∥∥∥J(k)Va + r(k)
∥∥∥

2
(7)

y(k+1) = y(k) + β(k)p(k)

and the main computational cost of each Gauss-Newton iteration originates from the following two
operations:

• The matrix-matrix product J(k)V. In many computational physics applications, the Jacobian
matrix J(k) is sparse with l nonzero entries per row, the product J(k)V is (or should be) computed
using a sparse matrix-matrix multiplication, and therefore its computational complexity is O(Nnl).

• The solution of a linear least-squares problem governed by the matrix J(k)V and characterized by
the right-hand side −r(k). The complexity of the solution of this problem by a preferred technique
such as the normal equation, SVD, or the QR decomposition, has a complexity O(Nn2).

In practice, n is sufficiently small so that the computation of the product J(k)V dominates the main
computational cost of each Gauss-Newton iteration. Therefore, any techniques that can significantly
reduce the cost of the matrix-matrix product J(k)V will accelerate the online execution of the nonlinear
PROM. It follows that as already stated in Section 1, any PMOR techniques that can deliver the desired
level of accuracy using a smaller dimension of the PROM can achieve this objective, by lowering n and
thus the complexity O(Nnl). This paper develops an alternative as well as complementary approach for
achieving the same objective based on sparsifying the right ROB V and therefore reducing the constant
of the complexity O(Nnl) of the matrix-matrix product J(k)V (see Section 3) – which may accelerate
faster the online processing of the nonlinear PROM.

2.2. Proper orthogonal decomposition, SVD, and properties
There is a variety of established approaches for constructing a right-ROB V ∈ RN×n. For linear

problems, a robust theory exists for this purpose and is supported by a variety of stability and accuracy
guarantees [28, 29]. For nonlinear problems, the most popular PMOR methods rely on the collection
of a series of solution snapshots (or related quantities) S = {ui}Ns

i=1, where ui = u(ti;µi) − u0 is the
solution at a particular parameter point (including time in the definition of the parameter space) of the
problem arising from the discretization of the HDM (1), adjusted to account for the affine offset; and
Ns denotes the number of collected solution snapshots.

Let S̃ = [u1 | · · · | uNs ] ∈ RN×Ns denote the snapshot matrix and let S denote its scaled counterpart
– that is

S = S̃D, where D = diag
{

1
‖u1‖2

,
1

‖u2‖2
, · · · , 1

‖uNs‖2

}
It follows that each scaled solution snapshot stored in S has a unit two-norm. Then, a ROB can
be constructed by collating, selecting, or compressing the columns of S – that is, the scaled solution
snapshots. POD by the method of solution snapshots [30, 31] constructs a right ROB of dimension n by
minimizing in a least-squares sense the projection error of the solution snapshots – that is, as follows

V = arg min
U∈Sn,N

Ns∑
i=1
‖ui −ΠUui‖2

2 (8)

where Sn,N denotes the Stiefel manifold of all orthogonal matrices in RN×n; and ΠU denotes the operator
that performs an orthogonal projection onto the subspace spanned by U, which, for an orthogonal matrix
U, is given by ΠU = UUT . Hence, the aforementioned scaling of the solution snapshots is performed
to prevent biasing otherwise the solution of the above optimization problem towards the snapshots with
larger magnitudes.

The minimization problem implied in (8) has an analytical solution given by the SVD, as described
in Algorithm 1.
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Algorithm 1 Computation of a POD basis using SVD.
Input: scaled snapshot matrix S ∈ RN×Ns ; basis dimension n or selection criterion for n
Output: POD basis V ∈ RN×n

1: Compute the thin SVD of the snapshot matrix: S = XΣYT

2: Set or determine the basis dimension n, which may be a function of the singular values stored in Σ
3: Return the truncated matrix of left singular vectors: V = [x1 | · · · | xn]

POD provides the n-dimensional basis V ∈ RN×n that is optimal in the sense that it achieves
the smallest least-squares error when approximating the solution snapshots using (2). Furthermore,
the truncated singular values of the matrix S provides the following simple and efficient formula for
computing the projection error en of the affine approximation of the scaled solution snapshots

en =
Ns∑
i=1
‖ui −ΠVui‖2

2 =
r∑

k=n+1

σ2
k (9)

where Σ = diag(σ1, . . . , σNs) denotes the matrix of singular values ordered as σ1 ≥ σ2 ≥ · · · ≥ σr >
(σr+1 = 0) ≥ · · · ≥ σNs = 0, r denotes the rank of the matrix S – and therefore r is the index of the
smallest nonzero σ value – and n ≤ r. Collectively, the solution of problem (8) given by Algorithm 1 and
the formula (9) are known as the Eckart-Young-Mirsky [32] theorem. The error (9) can be normalized
to obtain its counterpart εn ∈ ]0, 1[

εn =

r∑
k=n+1

σ2
k

r∑
k=1

σ2
k

=

Ns∑
i=1
‖ui −ΠVui‖2

2

Ns∑
i=1
‖ui‖2

2

where {ui}Ns
i=1 denotes in this case the set of scaled solution snapshots. A popular and reasonable

truncation criterion for determining an appropriate dimension n of the right ROB is then given by the
relative value of the total singular value energy accounted for

En = 1− εn =

n∑
k=1

σ2
k

r∑
k=1

σ2
k

Hence, rather than specifying a ROB dimension n, which may be hard to choose a priori, it is common
to specify a desired singular value energy threshold 0 < τ < 1 and choose the smallest n that meets the
specified threshold – that is,

n∑
k=1

σ2
k

r∑
k=1

σ2
k

≥ τ (10)

This can be simply done in the second line of Algorithm 1, once the SVD has been computed.

3. Space-local reduced-order bases

3.1. The concept
The POD method described above pre-supposes that a small set of vectors that closely approximates

the solution snapshots is sought-after. Underlying this choice is the assumption that the cost of exploiting
the resulting PROM scales with the number of constructed basis vectors. For this reason, the objective
is set to constructing a right ROB that is as accurate as possible for a given dimension n. However, the
primary operations performed using a right ROB during a PROM-based computation are matrix-matrix
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and matrix-vector multiplications. In general, such computations scale with the number of nonzero
entries of the ROB, when it is stored in a sparse data structure (e.g. the popular CSR or CSC sparse
matrix formats). On the other hand, if a sparse ROB is constructed, its dimension n may not be as
critical for computational complexity as the number of nonzero entries it contains. This observation
motivates an alternative framework for constructing a right ROB that introduces sparsity into the basis.

Many physical simulations are characterized by regions of the computational domain where the
solution exhibits different physical behaviors. For example, in fluid flow problems, a solution computed
during a single simulation may exhibit a shock in one region, boundary layers near wall boundaries,
and/or a turbulent wake behind some of them. Most importantly, these flow features may evolve with
the parameters of the parameter space P (which in this work includes time) – that is, with µ ∈ P. In
each of these regions, the fluid is in a different flow regime and therefore the solution may evolve in
different subspaces. In such a scenario, it may be beneficial to construct a space-local right ROB rather
than a space-global one to efficiently capture all of the disparate physics simultaneously. One may also
expect that by tailoring a space-local right ROB to the feature richness/poorness of the solution in each
nonoverlapping subdomain, and more importantly, its evolution with µ ∈ P, one may be able to reach a
desired level of accuracy using fewer basis vectors than in the case of a space-global ROB. Furthermore,
each component of a space-local basis is by definition confined to a region of the computational domain
and therefore locally supported. When all locally supported components of a right ROB are concatenated
to construct a right ROB for the entire computational domain, such a right basis will be sparse, and
this sparsity can be exploited to enhance the performance of the resulting PROM.

Having motivated it above in broad strokes, the concept of a space-local right ROB is next explained
in detail.

A schematic of the proposed approach is shown in Figure 1. First, a snapshot matrix is collected by
sampling the high-dimensional model in the parameter space of interest (here, time), as in the traditional
POD method. Then, the computational domain Ω – or more specifically, the computational mesh – is
partitioned into Nc nonoverlapping subdomains Ωi (submeshes, or clusters of mesh nodes or elements),
each to be covered by its own specialized ROB. The partitioning may be done manually a priori, or by
clustering the nodes of the mesh using the solution snapshots as features and a clustering algorithm (see
Section 3.3).

Figure 1: A schematic overview of the proposed approach for constructing a space-local right ROB using a snapshot matrix.

After the mesh is partitioned, the unknowns – or degrees of freedom (dofs) – attached to the mesh
nodes of a nonoverlapping subdomain Ωi can be renumbered consecutively, using any optimal numbering
scheme. Then, the snapshot matrix S can be partitioned into row-wise blocks (or submatrices) according
to the nonoverlapping mesh partition, as follows

S =

 S1
...

SNc


where S ∈ RN×Ns , Si ∈ RNi×Ns , for i = 1, . . . , Nc, and Ni denotes the number of dofs contained in Ωi.
Then, SVD is applied separately to compress each snapshot submatrix into an independent right ROB
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Vi ∈ RNi×ni , where the dimension ni depends on the behavior of the solution in the nonoverlapping
subdomain Ωi. Strategies for determining the dimensions ni are discussed in Section 3.2.

Next, the independent right ROBs Vi, i = 1, · · · , Nc, are concatenated to form what has been
referred to above as a space-local right ROB

Vloc =

V1
. . .

VNc

 (11)

where Vloc ∈ RN×(n1+···+nNc ) and each submatrix Vi is a locally supported basis and defines what has
been referred to so far as a component of the space-local right ROB Vloc. Note that

VT
locVloc =

VT
1 V1

. . .
VT

Nc
VNc


Hence, if each component Vi is orthonormal, Vloc is orthonormal.

One might hope that by tailoring each approximation subspace represented by one component Vi

of the space-local right ROB (11) to the spatial features exhibited by the solution in the corresponding
nonoverlapping subdomain Ωi, one could reduce the dimension ni of Vi to the extent that for a desired

level of accuracy, the total dimension nloc =
i=Nc∑
i=1

ni of Vloc could be smaller than that of a counterpart

right ROB constructed using the traditional POD method. Indeed, if for a fixed accuracy nloc < n
were possible, performance acceleration of the resulting PROM could be expected even in the absence
of sparse data structures for storing and manipulating Vloc. Unfortunately, this is impossible – at least
in the following sense, and for the following reason. From the Eckart-Young-Mirsky theorem [32], it
follows that for a given dimension n, the right ROB constructed using POD by the method of solution
snapshots reconstructs the snapshot matrix S with the best possible accuracy. In other words, for a
given dimension n, a traditional, POD-based, dense right ROB will always outperform any other right
ROB, including Vloc, from a projection error viewpoint. Consequently, in the context of a space-local
right ROB (11) of dimension nloc, the objective should be to find the mesh partition for which:

• Vloc delivers the same level of accuracy as a traditional, POD-based, dense counterpart right ROB
of dimension n, using a dimension nloc that is only marginally greater than n.

• The sparsity pattern of Vloc and its dimension nloc are such that the space-local PROM based on
Vloc is faster than its counterpart based on a traditional, POD-based, dense right ROB V.

Specifically, exploiting the sparsity pattern of Vloc (11) during the online solution of problem (7),
whose complexity dominates the overall complexity of LSPG during its online stage, can accelerate the
performance of this nonlinear PMOR method as follows:

• The first step in solving problem (7) consists in computing the matrix-matrix product J(k)V.
For all applications where the semi-discrete HDM (1) arises from a finite element (FE), finite
volume (FV), or finite difference spatial approximation of the underlying PDE, the Jacobian matrix
J(k) is typically sparse. In this case, the product J(k)Vloc can be performed using sparse-sparse
matrix-matrix multiplication. For a traditional, POD-based, dense right ROB V and a sparse
Jacobian with l nonzero entries per row, the complexity of computing J(k)V is O(Nln). In the
case of the sparse ROB Vloc however, if 0 ≤ γ ≤ 1 denotes the fraction of Vloc’s entries that are
nonzero, skipping the zero entries of Vloc during the evaluation of the product J(k)Vloc reduces
its complexity to less than O(Nlnγ). This upper bound corresponds to a worst-case algorithm
that expends time on operations involving two entries Jij and Vkl if either of them is nonzero.
Therefore, in the presence of a sparse right ROB, minimizing the quantity nγ is more important
than minimizing n, as far as computational performance is concerned. Consequently, if a space-
local right ROB can be constructed such that it delivers a similar accuracy to that of a traditional,
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POD-based, dense counterpart using a marginally larger dimension but a substantially smaller γ
factor, such a right ROB can lead to substantial computational savings in the evaluation of the
product J(k)V; thus, it can accelerate the wall-clock time performance of LSPG.

• The second step in solving problem (7) consists in solving a linear least-squares problem using
the outcome of the matrix-matrix product J(k)V. When V is sparse, this outcome is a sparse
matrix whose sparsity pattern can be exploited during the online execution of LSPG. For example,
sparse iterative least-squares solvers are available for the solution of problem (7) (e.g. see [33]).
If the normal equation approach is chosen for solving this problem and V = Vloc, the product(
J(k)Vloc

)T (J(k)Vloc
)

can be evaluated using sparse-sparse matrix-matrix multiplication. In prac-
tice however, the cost of the first step outlined above tends to dominate the total computational
cost of solving problem (7). Therefore, treating the outcome of the product J(k)Vloc as a sparse
matrix rather than an ordinary dense matrix is likely unnecessary for optimizing the performance
of the nonlinear LSPG PROM.

While the benefits of sparsity can outweigh the cost of a few additional right basis vectors, there is
a limit to this reasoning. Eventually, the cost of the solution of the least-squares problem in the second
step discussed above, which scales as O(n2), will not only become less negligible compared to that of the
first step, but will dominate the total cost of solving the optimization problem (7). For example, V = IN
is the sparsest possible right ROB, with only one nonzero entry per dof. However, this choice leads to
the HDM and therefore is inefficient. For this reason, a relatively small number of spatial clusters is
recommended as in this case, a space-local right ROB does not need many more additional basis vectors
than a dense POD right ROB to deliver a comparable level of accuracy.

3.2. Singular values and projection error
A beneficial element of the POD method for the construction of a traditional PROM is the singular

value energy criterion for selecting an appropriate dimension of the right ROB. For a space-local right
ROB however, the basis truncation process is more complex because there are Nc > 1 appropriate
dimensions to be determined – one for each component Vi of Vloc (11). Hence, it is desirable to develop
for a space-local right ROB a connection between singular values and the projection error to aid with
the selection of the dimensions ni of the basis components Vi, i = 1, . . . , Nc.

To this end, consider a space-local right ROB with Nc components (11) rewritten in compact form
as Vloc = diag (V1, · · · ,VNc), where Vi ∈ RNi×ni , i = 1, . . . , Nc. The total projection error of the set
of Ns solution snapshots stored in S = [u1 | · · · | uNs ] is

en,loc =
Ns∑
i=1
‖ui −ΠVlocui‖2

2 =
∥∥(IN −VlocVT

loc
)
S
∥∥
F

=
∥∥(IN − diag

(
V1VT

1 , · · · ,VNcVT
Nc

))
S
∥∥2
F

where the subscript F denotes the Frobenius norm. Due to the block-diagonal structure of the matrix
Vloc and to the result (9), the above error can be rewritten as

en,loc =
Nc∑
i=1

∥∥(INi −ViVT
i

)
Si

∥∥2
F

=
Nc∑
i=1

ri∑
j=ni+1

(σi,j)2 (12)

where σi,j denotes the j-th singular value returned by the POD performed in the nonoverlapping sub-
domain Ωi and ri denotes the rank of the basis component Vi.

The error result (12) suggests the following potential truncation strategies:

• S1: Construct the nloc-dimensional space-local right ROB that achieves the smallest snapshot
projection error by choosing the left singular vectors associated with the nloc largest singular values,
irrespective of which nonoverlapping subdomain Ωi they belong to. This strategy automatically
determines the relative dimensions of the various components Vi of Vloc.

• S2: Alternatively, construct a space-local right ROB with Nnnz nonzero entries that achieves the
smallest projection error, by progessively choosing the singular vectors associated with the largest
scaled singular values σi,j/Ni, i = 1, . . . , Nc, j = 1, . . . , nloc, where in this case nloc is the smallest
integer for which the resulting space-local right ROB Vloc has Nnnz nonzero entries.
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• S3: Apply a separate energy truncation criterion in each nonoverlapping subdomain Ωi. For
example, if the solution or its behavior in Ωi is known to be more or less influencial than elsewhere
on the quantities of interest (QoIs), retain more or fewer basis vectors in Ωi.

3.3. Feature-based nonoverlapping domain decomposition and snapshot clustering
It remains to describe how to perform nonoverlapping mesh partitioning (and therefore nonoverlap-

ping domain decomposition), to support the construction of a space-local right ROB Vloc (11). Because
there is no unique solution to this problem, two sample partitioning approaches are presented below.
The first one is a heuristic for manually decomposing the computational domain. The second approach
is an automated approach for discovering parameter-dependent spatial features of the solution – that is,
spatial features that evolve when µ is varied in the parameter space P (which in this work includes time)
and therefore cannot be captured by a small number of solution snapshots. For some applications, such
features may be obvious to the eye of a trained analyst, may suggest a simple manual partitioning, or
may have properties that allow a convervative identification of their locations via a simple numerical
algorithm.

3.3.1. Heuristic for manual nonoverlapping mesh partitioning
The main idea here is that in many computational physics applications, the analyst can distinguish

a priori between a region of the computational domain (which does not necessarily have to be singly-
connected), where the solution of the problem of interest may exhibit parameter-dependent spatial
features; and the remainder of the computational domain, where the solution is either feature-poor, or
its features are relatively parameter-independent. For example, in CFD and solid mechanics applications,
the analyst can often anticipate the regions of the computational domain where eddies and/or shocks in
the first case, or large displacements/rotations and/or stress concentration in the second case, may occur
and evolve in time or with the design parameters. Hence, a simple heuristic for manually decomposing a
computational domain Ω into two nonoverlapping subdomains via nonoverlapping mesh partitioning is
to distinguish between a region Ω1, where it can be anticipated that the solution will develop parameter-
dependent features; and the remainder of the computational domain Ω2 = Ω\Ω1. This heuristic, which
is valid for both steady (static) and unsteady (dynamic) problems, is discussed below.

Borrowing terminology from the field of CFD for external flows, the region of the computational
domain Ω where the solution is feature-rich and the features are known to be parameter-dependent, is
referred to here as the “near-field” (NF) and denoted by ΩNF; and the region of Ω where the solution is
feature-poor or the features are known to be parameter-independent is referred to as the “far-field” (FF)
and denoted by ΩFF. Again, neither ΩNF nor ΩFF needs to be singly-connected. Then, the proposed
heuristic for manual nonoverlapping mesh partitioning, which is not limited to CFD and solid mechanics
applications, can be described as follows: specify, within a reasonable level of conservatism, the interface
boundaries delimiting the near-field region ΩNF ⊂ Ω; treat the remainder of the computational domain
as the far-field region – that is, ΩFF = Ω\ΩNF; and perform the nonoverlapping mesh partitioning
accordingly. The expectation is that the right ROB component associated with the near-field will require
a larger dimension nNF than its counterpart nFF associated with the far-field – that is, nNF > nFF.
However, the spatial support of this ROB component in terms of dofs may be smaller than that of its
counterpart, which is the scenario where the heuristic for manual nonoverlapping mesh partitioning is
most appropriate.

Let NNF and NFF denote the number of dofs attached to the nonoverlapping subdomains ΩNF
and ΩFF, respectively, with NNF < NFF, and let N = NNF + NFF. Combining both ROB components
associated with ΩNF and ΩFF as in (11) leads to a space-local right ROB with Nnnz = NNFnNF+NFFnFF
nonzero entries. Hence, for Vloc, the average number of nonzero entries per dof is

Nnnz

N
= NNF

N
nNF + NFF

N
nFF

Then, a set of conditions that promtotes computational efficiency in a space-local right ROB, relative
to a traditional POD-based dense counterpart is:
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• nNF ≤ n, where n denotes the dimension of a traditional POD-based dense right ROB for the entire
computational domain Ω. This is a necessary condition for building a computationally efficient
space-local right ROB of the form given in (11) for a trivial reason. For many applications, it is
rather easy to satisfy.

• nFF < nNF, which is easily satisfied when ΩNF is properly defined.

• NNF/N is small, which requires that the solution in the chosen ΩNF be not only feature-rich, but
that its features in this subdomain evolve with µ ∈ P.

To illustrate this simple heuristic, consider the following one-dimensional initial boundary value
problem (IBVP) based on the inviscid Burgers equation

∂

∂t
w(x, t) + ∂

∂x

(
1
2

(w(x, t))2
)

= 0 (13)

w(x, 0) =

{
4 + 0.005x 0 ≤ x ≤ 50
1 50 < x ≤ 100

w(0, t) = 4

where w(x, t) ∈ R denotes the scalar state variable, x ∈ [0, 100], and t ∈ [0, 20]. The IBVP (13) is
discretized in space using a first-order Godunov method and 500 evenly spaced mesh nodes; and in time
using the second-order trapezoidal rule and the time-step ∆t = 0.05. Its numerical solution obtained
using the outlined discrete HDM is represented by the dashed lines in Figure 2. It shows that for the
specified initial condition, the initial shock advects rightward across the spatial domain. In the left half
of this domain, the solution is nearly constant in time: in the context of the affine approximation (2),
it can be captured by a low-dimensional right ROB. In the right half however, the solution exhibits an
advecting shock: in the same context, its approximation requires a much higher-dimensional right ROB.
To deliver the high degree of accuracy shown by the red lines in Figure 2, an LSPG PROM constructed
using a traditional POD-based dense right ROB requires a dimension n ≥ 111 (En = 99.9999%). On the
other hand, the counterpart space-local LSPG PROM constructed using the partitioning of the domain
x ∈ [0, 100] into ΩNF = {50 < x ≤ 100} and ΩFF = {0 ≤ x ≤ 50}, and using the truncation strategy
S1 (see Section 3.2) achieves the same total singular value energy (Enloc = En) with the same dimension
nloc = n = 111 distributed as follows: nNF = 110; and nFF = 1. Then, as expected and shown by
the blue lines in Figure 2, the space-local LSPG PROM of the same dimension as the traditional LSPG
PROM delivers the same accuracy, but benefits computationally from the sparsity of its ROB Vnloc .

Figure 2: IBVP based on the inviscid Burgers equation – Numerical predictions obtained using: the HDM; an LSPG
PROM of dimension n = 111 constructed using a traditional, POD-based, dense right ROB and En = 99.9999%; and a
space-local LSPG PROM of dimension nloc = 111 constructed using a space-local right ROB and En = 99.9999%.

In summary, for this example:
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• For a similar high level of accuracy, the traditional POD-based dense right ROB V is characterized
by the dimension n = 111; and the space-local right ROB is characterized by NNF = NFF = 250,
nNF = 110, nFF = 1, and the same dimension nloc = n = 111.

• For the traditional, POD-based, dense right ROB, the average number of nonzero entries per dof
is Nnnz/N = (N × n)/N = n = 111; for the space-local right ROB Vloc however, this number is
Nnnz/N = 55.5 – that is, twice smaller.

• From the complexity analysis performed in Section 3.1, it follows that the LSPG PROM built
using the space-local right ROB should be more computationally efficient than its counterpart
constructed using the traditional, POD-based, dense right ROB.

The heuristic for manual nonoverlapping mesh partitioning presented here is demonstrated for a
large-scale realistic turbulent flow problem in Section 5, where the wall-clock time performance of the
LSPG PROM constructed using the resulting space-local right ROB Vloc is shown to be superior to that
of its counterpart built using the traditional POD-based dense right ROB.

3.3.2. FFT-k-means for automatic spatial feature identification and nonoverlapping mesh partitioning
An alternative approach is presented here for decomposing the computational domain Ω via nonover-

lapping mesh partitioning, in order to cover the case where the manual partitioning approach described
above is not easily applicable. It is designed specifically for time-dependent problems. In this approach,
the nonoverlapping domain decomposition task is formulated as a clustering problem: for example, a
node-clustering problem; or a dof-clustering problem. In the former case, the time-history of any scalar
component of the solution (e.g. pressure, velocity, density, etc.) can be inputted as the vector-valued
feature to be clustered. In the latter case, all rows of the snapshot matrix S, which are associated with
the dofs of the problem of interest, are considered to be the vector-valued features to be clustered. In
both cases, the clustering problem is solved using Algorithm 2, which builds on the k-means algorithm.
Specifically, Algorithm 2 is described in the case of a one-dimensional parameter space P containing
only the time variable, as it assumes that two consecutive columns of the snapshot matrix S correspond
to two consecutive time-instances. Furthermore, it is written in its simplest and most elegant form in
order to focus on its essence. In this form, it is applicable to the node-clustering of a scalar problem; and
to the dof-clustering of scalar as well as vector problems. However, the generalizations of this algorithm
to a higher-dimensional parameter space and to node-clustering of vector problems are straightforward
and require only minor modifications. Numerous experimentations performed by the authors with this
algorithm and unsteady flow problems have shown that it is capable of identifying many flow features,
when the solution snapshots are collected at evenly spaced time-intervals (e.g. see Section 5).

Considering that the dynamics of distinct spatial features associated with different physics regimes
are likely to evolve at different time-scales and tend to be characterized by different frequency-domain
characteristics, Algorithm 2 begins by applying the fast Fourier transform (FFT) to each row of the
snapshot matrix S – that is, to the time-history of the state variable with which a row is associated.
Then, it clusters the computed frequency-magnitude spectra using the standard k-means algorithm: this
unsupervised machine learning algorithm is described in Algorithm 3, to keep this paper as self-contained
as possible.

Algorithm 2 Decomposition of the computational domain using FFT-k-means.
Input: snapshot matrix S ∈ RN×Ns ; number of spatial clusters Nc

Output: assignment ai ∈ {1, . . . , Nc} of each row of S to a spatial cluster, i = 1, . . . , N
1: Let S[i, ·] denote the i-th row of S: compute the FFT magnitude spectra S[i, ·]FFT-mag, i = 1, . . . , N
2: ai ← kmeans (S[i, ·]FFT-mag, . . . ,S[NFFT-mag, ·])

For many unsteady flow problems, including the first application discussed in Section 5, the FFT-
k-means approach outlined above demonstrated the ability to identify the regions of a computational
domain where the solution exhibits distinct localized behaviors. However, once the nonoverlapping
subdomains containing the localized features have been identified, they should be further expanded to
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Algorithm 3 Clustering algorithm kmeans.
Input: N vectors to cluster x1, . . . ,xN ; number of clusters Nc

Output: assignment ai ∈ {1, . . . , Nc} of each vector xi to a cluster, i = 1, . . . , N
1: Choose Nc random vectors as initial centroids ci, i = 1, . . . , Nc

2: while at least one assignment ai has changed between the last two iterations do
3: ai ← arg minj ‖xi − cj‖2, i = 1, . . . , N

4: cj ←
( ∑

ai=j
xi

)/
counti=1,...,N (ai = j)

5: end while

introduce conservatism in the overall approach and avoid, for example, feature clipping at the subdomain
edges. Algorithm 4 accomplishes this task by essentially adding a few layers of neighboring mesh nodes
to each nonoverlapping subdomain identified by Algorithm 2.

Algorithm 4 Subdomain expansion algorithm.
Input:

• assignment ai ∈ {1, . . . , Nc} of each mesh node i ∈ {1, . . . , N} to a cluster
• adjacency operator that lists the mesh neighbors neigh(i) of mesh node i
• label m for the spatial cluster to be expanded
• number of extra mesh layers Nm to add to the cluster m

Output: assignment ai ∈ {1, . . . , Nc} of each mesh node i ∈ {1, . . . , N} to a cluster, with cluster m
expanded by nm additional layers of mesh nodes

1: it← 1
2: while it ≤ nm do
3: aj ← m for all nodes i, j, where ai = m, j ∈ neigh(i), and aj 6= m
4: it← it+ 1
5: end while

For scalar problems, there is no difference between node-clustering and dof-clustering. For vector
problems, the main difference is between the outcomes of both clustering approaches: in the former case,
the dofs attached to a same node may be placed in different clusters; in the latter case, the dofs attached
to a same node can always be placed in the same cluster. Node-clustering simplifies the implementation
in an application software of the concept of a space-local right ROB. On the other hand, dof-clustering
can be viewed as more natural for the space-local ROB concept proposed in this paper, as the local
features of the various components of the solution may appear and evolve in different subdomains,
However, for some applications, dof-clustering may complicate the expansion task of Algorithm 4 – and
requires in any case its adaptation to the dof context – or may simply call to forgo this task and the
conservatism in nonoverlapping mesh partitioning it enables.

4. State-space reduced-order bases and hyperreduction

Here, it is shown that the concept of a space-local right ROB can be combined with that of a state-local
right ROB [2, 9] and with hyperreduction, to squeeze the most performance out of a nonlinear PROM.
For this purpose, the concepts of a state-local right ROB and hyperreduction are also overviewed in order
to keep this paper as self-contained as possible; however, details are omitted for clarity and brevity.

4.1. State-local reduced-order bases and their spatial partitioning
The traditional affine approximation (2) was extended in [2] to a piecewise affine approximation,

in order to construct a simple (if not the simplest) nonlinear low-dimensional approximation ũ(t;µ)
of the solution u(t;µ) that mitigates the effect of the Kolmogorov n-width on nonlinear PMOR. This
extension led to the concept of a most-appropriate right local ROB, referred to here more precisely as
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a most-appropriate state-local right ROB, where locality pertains to the region of the approximation
manifold M where the current approximate solution lies. Hence, this concept requires partitioning first
M into subregions Mi; then constructing and assigning to each Mi a local, traditional (and therefore
dense) right ROB V(i). It also requires identifying online (and thus in real-time) the closest subregion
M` to the location onM of the current approximation of the high-dimensional solution; then advancing
it (or for steady-state problems, updating it) in the subspace generated by the identified local right
ROB – that is, the most-appropriate state-local right ROB V(`). Recently, it was shown in [9] that
when combined with LSPG for nonlinear PMOR and ECSW for hyperreduction, this approach is very
computationally efficient: it enabled the acceleration by several orders of magnitude of the solution of a
large-scale turbulent flow problem characterized by a complex aircraft geometry and O(108) dofs, while
delivering exceptional accuracy.

In practice, the concept of a state-local right ROB is grounded in snapshot clustering. Its offline and
online stages are typically implemented as follows (see also Figure 3):

1. Offline
• Cluster the columns of the snapshot matrix S into k clusters, for example, using Algorithm 3.

Then, partition S accordingly – that is, S =
[
S(1), . . . ,S(k)], where S(j) ∈ RN×N(j)

s and N
(j)
s

denotes the number of solution snapshots assigned to cluster j. Next, compute the centroid
of each snapshot cluster matrix S(j)

c(j) = 1
N

(j)
s

N(j)
s∑

j′=1
S(j)[·, j′]

where S(j)[·, j′] denotes the j′-th column of S(j). This clustering defines a partitioning of the
state space and enables the characterization of each point in the state space by its proximity
to the nearest centroid c(`).

• Compresss each snapshot cluster matrix S(j) using SVD. This generates a set of state-local
right ROBs V(1), . . . ,V(k), where V(j) ∈ RN×n(j) and n(j) denotes the size of the j-th state-
local right ROB – determined, for example, using the total singular value energy criterion in
cluster j.

2. Online
• To advance the approximate solution from time-step tm to time-step tm+1: 1) identify the

cluster whose centroid is nearest to the current reconstructed state-vector ũm – that is, identify
the index

` = arg min
j∈{1,...,k}

∥∥∥ũm − c(j)
∥∥∥

2

then 2) construct the approximation ũm+1 using the state-local right ROB V(`). For this
purpose, if the approximation ũm was computed using a different state-local right ROB V(`′),
compute first the projection of ũ(m) onto the subspace represented by V(`), ΠV(`)um, then
apply the chosen time-integrator to this projected quantity to compute ũm+1.

As presented above, the clustering of the solution snapshots leads to a nonoverlapping partitioning of
the approximation manifoldM, which promotes discontinuities in the piecewise affine approximation of
the solution. This issue can be addressed by a post-processing step, where in each cluster a few solution
snapshots assigned to its neighbors are duplicated (see [2, 9]).

The concept a state-local right ROB blends well with that of a space-local right ROB, as both
concepts are complementary: the former concept partitions a snapshot matrix column-wise; the latter
one partitions it row-wise (see Figure 1 and Figure 3). Hence, both concepts can be combined by
first clustering the columns of the snapshot matrix to create k snapshot matrix clusters S(1), . . . ,S(k)

representing k subregions of the approximation manifold M; then clustering the rows of each snapshot
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Figure 3: Construction and exploitation of state-local right ROBs: snapshot clustering and data compression within a
cluster (left); and identification and exploitation at each time-step of the most-appropriate state-local right ROB V(`).

matrix cluster S(j) to partition it in Nc row-wise blocks, as follows

S(j) =


S(j)

1
...

S(j)
Nc

 (14)

where S(j)
i ∈ RNi×N(j)

s and
Nc∑
i=1

Ni = N .

In (14), each row-wise block S(j)
i is separately compressed using SVD to compute a j-th space-local

right ROB with components
{

V(j)
i

}Nc

i=1
. Then, the components are concatenated to form k sparse,

state-local right ROBs of the form

V(j)
loc = diag

(
V(j)

1 , . . . ,V(j)
Nc

)
, j = 1, . . . , k

In principle, each snapshot cluster matrix S(j) could be partitioned using a different nonoverlapping
domain decomposition: however, this would unnecessarily complicate the corresponding software imple-
mentation. In any case, the combination of both concepts of state-local and space-local right ROBs leads
to the construction of k sparse state-local right ROBs that can be expected to be more computationally
efficient for nonlinear PMOR than the k original state-local right ROBs.

4.2. Hyperreduction of state-local projection-based reduced-order models
For most highly nonlinear problems, those contributions to the construction and solution of the

nonlinear PROM-based problem (4) whose complexity scales with the large dimension N of the HDM,
cannot be pre-computed. For example, in the context of the nonlinear LSPG method, such contri-
butions include: the evaluations of the Jacobian matrix J(k) (u0 + Vy(tm;µ), tm;µ) and the residual
vector r(k) (u0 + Vy(tm;µ), tm;µ); the matrix-matrix multiplication J(k)V; and the solution of the
least-squares problem (7). In this case, computational efficiency calls for hyperreducing (4) – that is,
introducing approximations in the aforementioned computations that enable their execution at each
time-step and for each queried parameter vector µ with a complexity that is independent of N .

Currently, the discrete empirical interpolation method (DEIM) [1] is arguably the most popular
hyperreduction method. However, the ECSW method [6] is chosen for this work for four main reasons:
for computational structural dynamics and wave propagation applications, it provably preserves the
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Lagrangian structure associated with Hamilton’s principle for second-order dynamical systems and thus
provably preserves the numerical stability properties of the chosen time-integration scheme [34]; for many
CFD applications, it was numerically shown to be stable [8]; for challenging engineering computations,
it was shown to accelerate solution time by more than three orders of magnitude (for example, see
[9]); and the developments to be presented here are anyway independent of the specifics of the chosen
hyperreduction method.

ECSW can be described in one line as a cubature formula for approximating projected matrices and
vectors. For example, noting that the reduced-order residual (4) can be written as

rn (y(tm;µ) , tm;µ) = WT r (u0 + Vy(tm;µ), tm;µ) =
∑
e∈E

WTLT
e re (Le+ (u0 + Vy(tm;µ)) , tm;µ)

(15)

ECSW approximates this projected quantity as

rn(y(tm;µ), tm;µ) ≈ r̃n(y(tm;µ), tm;µ) =
∑

e∈Ẽ⊂E

ξeWTLT
e re(Le+(u0 + Vy(tm;µ)), tm;µ) (16)

In (15) and (16) above:

• E denotes the computational mesh underlying the HDM.

• Le ∈ {0, 1}de×N is the Boolean matrix that localizes a high-dimensional vector of size N to the
de dofs associated with the mesh entity e (e.g. the finite volume cell, finite element, or finite
differencing mesh node e).

• Le+ ∈ {0, 1}de+×N is the Boolean matrix that localizes a high-dimensional vector of size N to the
de+ ≥ de dofs attached to the mesh entity e and a set of neighboring mesh entities determined by
the stencil of the semi-discretization method underlying the construction of the HDM.

• re (Le+(u0 + Vy(tm;µ)), tm;µ) ∈ Rde is the contribution of mesh entity e to the high-dimensional
residual.

• Ẽ ⊂ E is a subset of E whose mesh entities e constitute the “points” of the cubature rule. Typically,(
Ñe =

∣∣∣Ẽ∣∣∣)� (Ne = |E|), where |♣| denotes the cardinal of the set ♣.

• {ξe}e∈E is the set of “weights” of the cubature rule. These weights are restricted to be positive for
reasons that are explained in [6] and [9].

Similarly, ECSW approximates the projected Jacobian, which is needed by Newton’s method to solve
the nonlinear system of reduced-order equations r̃n(y(tm;µ), tm;µ) = 0, as follows

J̃n(y(tm;µ);µ) =
∑

e∈Ẽ⊂E

ξeWTLT
e Je(Le+(u0 + Vy(tm;µ));µ)Le+V

where Je(Le+(u0 + Vy(tm;µ));µ) ∈ Rde×de+ is the Jacobian of re with respect to y.
Most importantly, ECSW determines the set of cubature points Ẽ and the corresponding set of

weights ΞẼ =
{
ξe | e ∈ Ẽ

}
using a machine learning approach based on the loss function

‖Cζ − d‖2

where
(
C ∈ RNs×Ne ,d ∈ RNe

)
is the pair of training matrix and training vector obtained by requiring

that for the generalized coordinates of all collected solution snapshots, the cubature rule (15) is exact
for ζ = 1, where 1 denotes the Ne-dimensional vector of ones. Specifically, ECSW determines Ẽ and ΞẼ
by solving the following non-negative least-squares (NNLS) problem

minimize ‖Cζ − d‖2
2

subject to ζ ≥ 0
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equipped with the threshold-based early termination criterion

‖Cζ − d‖2 ≤ ε‖d‖2 (17)

where ε > 0 is a specified small tolerance.
Now, note that a sparse right-ROB V accelerates the hyperreduction approximation (15) in the

same manner it accelerates any other PROM-based computation. Hence, a space-local right ROB Vloc
is beneficial to hyperreduction in the same way it is beneficial to PMOR. Furthermore, the use of a space-
local right ROB in the cubature rule (15) does not incur any modification to the mesh sampling procedure
underlying the ECSW method, or for that matter, any other hyperreduction procedure. However, it
motivates its application to the nonoverlapping subdomains {Ωi}Nc

i=1 in an embarrassingly parallel fashion
and the construction of one reduced mesh “component” for each separate subdomain. In this way, the
tolerance ε can be tailored to each specific subdomain Ωi, according to the feature richness/poorness of
the solution in this subdomain, and more importantly, its evolution with µ ∈ P.

5. Applications

The proposed concept of a space-local ROB for accelerating PROM-based computations through
sparsity was implemented in the compressible flow solver AERO-F [35, 36] and integrated in its nonlinear
PMOR capabilities. It is illustrated here by treating the following two CFD applications:

1. The prediction of an unsteady fluid flow around a NACA 0012 airfoil that exhibits flow separation
and vortex shedding. In this case, the flow is modeled using the Reynolds-averaged Navier-Stokes
(RANS) equations equipped with the Spalart-Allmaras turbulence model [37]. The problem is two-
dimensional but the flow computations are performed in three dimensions because AERO-F is a
three-dimensional flow solver. PMOR is performed using the traditional affine approximation and
LSPG but without hyperreduction, in order to focus exlusively on the discussion of the performance
of the novel elements presented in this paper. Consequently, the wall-clock time performance of the
space-local PROM is contrasted only with that of its traditional counterpart: indeed, in the absence
of hyperreduction, no significant speedup factor can be expected with respect to the performance of
the HDM. For this academic application, both FFT-k-means and far-field/near-field approaches are
considered for decomposing the computational fluid domain into two nonoverlapping subdomains.

2. The prediction of the unsteady, turbulent wake flow behind the Ahmed body – which is a bench-
mark CFD problem in the automotive industry. In this case: the flow is modeled using the detached
eddy simulation (DES) equations [38]; the HDM is of a much higher dimension than in the pre-
vious case; LSPG is performed using sparse state-local right ROBs obtained by combining both
concepts of state-local and space-local right ROBs; the resulting nonlinear reduced-order governing
equations do not exhibit a polynomial dependence on the fluid state variable and therefore hyper-
reduction is performed using ECSW. For this industrial-grade application, the far-field/near-field
approach is considered for decomposing the computational fluid domain into two nonoverlapping
subdomains.

In both applications outlined above, the fluid is air and is modeled as a perfect gas; the HDM (1) is
constructed by discretizing the three-dimensional inviscid fluxes using a second-order FV upwind scheme
based on the approximate Riemann solver and the three-dimensional viscous fluxes and source term are
approximated by a piecewise linear FE method; time-discretization is performed using the three-point
implicit backward difference formula equipped with a Newton-Krylov solver and the additive Schwartz
preconditioned GMRES algorithm [39]; and the accuracy delivered by the nonlinear PROMs is measured
using a relative root mean squared error (RMSE) metric as follows

REQ =

√ ∑
t∈TQ

(Q(t)− Q̃(t))2

√ ∑
t∈TQ

Q(t)2
(18)
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In (18) above, Q(t) is the QoI, Q̃(t) denotes its PROM-based approximation, and TQ is the set of
evenly-spaced times-teps at which the QoIs are computed.

All simulations are performed in double precision arithmetic on a Linux cluster, where each compute
node is equipped with two 12-core Intel Xeon Gold 5118 processors running at 2.30 GHz and 192 GB of
memory.

5.1. NACA 0012 airfoil: vortex-shedding due to flow separation
5.1.1. High-dimensional CFD model

For this RANS application, the chord length of the airfoil is set to c = 1 m; and the free-stream Mach
number, free-stream pressure, free-stream density, and angle of attack are set to M∞ = 0.4, p∞ = 105

Pa, ρ∞ = 1.3 kg/m3, and α = 10◦, respectively. The corresponding Reynolds number based on the
chord length is Re = 4.47 × 104. These flow conditions promote flow separation and vortex shedding
in a realtively small region aft of the top surface of the airfoil, which makes this application a good
demonstration of the approach proposed in this paper for accelerating nonlinear PMOR.

The computational domain Ω is chosen as a disk of diameter 20 c = 20 m. It is discretized using
a one-element-thick, unstructured, three-dimensional mesh with 165,460 nodes and 474,362 tetrahedral
elements. Figure 4 shows the computational mesh in the vicinity of the airfoil. Symmetry boundary
conditions are applied on the spanwise faces of the domain to ensure that the computed flow is two-
dimensional. A no-slip adiabatic wall boundary condition is applied on the wall boundary of Ω; and
the Steger-Warming flux splitting method [40] is applied on the far-field boundaries of Ω to enforce the
far-field boundary conditions. The resulting semi-discrete HDM has the dimension N = 992, 760 (five
conservative fluid variables and one turbulence modeling variable per node). The unsteady flow com-
putation is initialized from the results of a quasi-steady simulation performed using the same boundary
conditions and in a sufficiently long time-interval to reach the onset of a statistically stationary flow.
Then, time-integration is performed until Tf = 0.025 s using the constant time-step size ∆t = 5× 10−5

s and therefore 500 time-steps.

Figure 4: Discretization of a computational fluid domain around a NACA 0012 airfoil.

The HDM-based unsteady simulation is carried out on a single core of the aforementioned Linux
cluster: it requires 5.5 hrs wall-clock time. The top-left part of Figure 5 displays the contour plots of
the local Mach number computed at Tf = 0.025 s. It reveals the presence of flow separation features on
the top surface of the airfoil and vortex shedding behind it.

Figure 6 displays in black lines the time-histories of four computed QoIs: the lift and drag coefficients;
and the flow velocity (magnitude) and pressure at a probe located 0.11 chord-lengths downstream of the
airfoil and 0.13 chord-lengths above it (in a coordinate system where one axis is aligned with the chord).
The probe data are normalized by their values at the free-stream.
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Figure 5: Contour plots of the local Mach number computed around a NACA 0012 airfoil at Tf = 0.025 s using: the HDM
(top-left); a traditional LSPG PROM based on a dense right ROB (top-right); a counterpart LSPG PROM based on a space-
local sparse right ROB constructed using the automated FFT-k-means domain decomposition approach (bottom-left); and
a counterpart LSPG PROM based on a space-local sparse right ROB constructed using the manual near-field/far-field
domain decomposition approach (bottom-right).

Figure 6: Time-histories of four QoIs numerically predicted using various computational models (NACA 0012): lift coeffi-
cient (top-left); drag coefficient (top-right); normalized flow velocity at a probe (bottom-left); and normalized pressure at
the same probe (bottom-right).

5.1.2. Space-local PROMs
Both nonoverlapping domain decomposition approaches described in Section 3 are applied to con-

struct two space-local LSPG PROMs of the same dimension. A similarly accurate traditional LSPG
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PROM is also built for the purpose of performance comparisons. In all cases, 500 solution snapshots are
collected at the sampling frequency implied by ∆ts = 5 × 10−5 s in the time-interval t ∈ [0, 0.025] s –
that is, at every time-step of the HDM-based simulation.

The three LSPG PROMs are constructed as follows:

• The traditional one based on a conventional, POD-based, dense right ROB is constructed using
the singular value energy criterion (10) with τ = 99.99%, which leads to a PROM of dimension
n = 17.

• The first space-local PROM is constructed using the FFT-k-means algorithm (Algorithm 2) to
decompose the computational fluid domain into two nonoverlapping subdomains and Algorithm
4 to expand by five layers of mesh nodes that subdomain expected to contain flow features and
denoted here by Ω1. From the comparison of the top part of Figure 7 with any part of Figure
5, the reader can observe that in this case, Algorithm 2 alone – and certainly the combination of
Algorithm 2 and Algorithm 4 – yields a nonoverlapping domain decomposition where Ω1 contains
both regions of flow separation and vortex shedding. Then, a right ROB is constructed in each
subdomain using the singular value energy criterion (10) with τ = 99.99%, which leads to: a right
ROB in Ω1 of dimension n1 = 16; a right ROB in Ω2 of dimension n2 = 12; and therefore a
space-local sparse right ROB of dimension nloc = 28.

• The second space-local PROM is constructed by applying the manual near-field/far-field heuristic
to decompose the computational fluid domain into two nonoverlapping subdomains ΩNF and ΩFF
(see the bottom part of Figure 7). Again, the comparison of any part of Figure 5 with the bottom
part of Figure 7 shows that ΩNF contains both regions of flow separation and vortex shedding.
Then, a right ROB is constructed in each subdomain using separate singular value energy criteria
(10) that account for the feature richness/poorness of the solution: τNF = 99.99% in ΩNF; and
τFF = 99% in ΩFF. This leads to: a right ROB in ΩNF of dimension n1 = 17; a right ROB in ΩFF of
dimension n2 = 4 only; and therefore a space-local sparse right ROB of dimension nloc = 21. The
ability to tune the truncation criterion (10) to each subdomain allows the computational effort to
focus in this case on the vortex-shedding region where the solution is most important and complex.

Figure 7: Decomposition of the computational fluid domain around the NACA 0012 airfoil into two nonoverlapping
subdomains using: Algorithm 2, with Ω1 shown in red and Ω2 shown in grey (top-left); Algorithm 2 and Algorithm 4,
with Ω1 shown in red and Ω2 shown in grey (top-right); and the near-field/far-field heuristic with ΩNF shown in red and
ΩFF shown in grey.

Figure 6 shows that all nonlinear LSPG PROMs outlined above deliver similar excellent levels of
accuracy, for all considered QoIs. The relative error results reported in Table 2 confirm this observation.
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LSPG PROM type RECL (%) RECD (%) REv (%) REp (%)
Traditional (dense right ROB) 0.08 0.06 0.8 0.07
Space-local (FFT-k-means) 0.08 0.08 1.0 0.07
Space-local (near-field/far-field) 0.70 0.20 0.8 0.08

Table 1: Unsteady flow problem around a NACA 0012 (RANS): accuracy of the constructed nonlinear LSPG PROMs.

Table 2 presents relevant dimensionality and sparsity data. It shows that while each constructed
space-local PROM has a higher dimension than the similarly accurate traditional PROM, the associated
space-local right ROB has almost 50% fewer nonzero entries per dof (nγ) and therefore a strong potential
for accelerating the PROM-based computations. This potential is confirmed by the results discussed in
the next section.

LSPG PROM type n n1 n2 γ nγ
Traditional (dense) 17 – – 1.000 17.00
Space-local (FFT-k-means) 28 16 12 0.477 13.38
Space-local (near-field/far-field) 21 16 4 0.483 10.15

Table 2: Unsteady flow problem around a NACA 0012 (RANS): dimensions and sparsity of the constructed nonlinear
LSPG PROMs.

5.1.3. Wall-clock performance results
All PROM-based simulations are also carried out on a single core of the same Linux cluster: their

wall-clock time performance results are reported in Table 3.
The simulation based on the traditional nonlinear LSPG PROM constructed using a traditional

dense right ROB consumes 3.97 hrs wall-clock time and therefore performs 1.39 times faster than its
HDM-based counterpart. This is because without hyperreduction, no substantial speedup relative to
HDM-based computations can be achieved for such a nonlinear problem. As stated earlier, the main
interest for this example is in the speedup factor that can be delivered by a space-local PROM relative
to a traditional counterpart.

The simulation based on the similarly accurate space-local PROM constructed using the FFT-k-
means algorithm for nonoverlapping domain decomposition completes in 3.54 hrs. Hence, it delivers a
speedup factor of 1.11 relative to its counterpart based on the traditional PROM. That based on the
similarly accurate space-local PROM constructed using the near-field/far-field heuristic for nonoverlap-
ping domain decomposition completes in 3.13 hrs. Thus, it achieves a speedup factor of 1.27 relative to
the same reference. Larger speedup factors are achieved in the second case by tuning the heuristic (since
it is performed manually), but the emphasis here is on demonstrating the potential for a speedup factor
of a simple, hands-off nonoverlapping domain decomposition approach.

LSPG PROM type
Wall-clock time

(hrs)
Wall-clock speedup

factor
Traditional (dense) 3.97 –

Space-local (FFT-k-means) 3.54 1.11
Space-local (near-field/far-field) 3.13 1.27

Table 3: Unsteady flow problem around a NACA 0012 (RANS): wall-clock time performance of the various nonlinear
LSPG PROMs.

5.2. Turbulent flow in the near-wake of an Ahmed body
5.2.1. High-dimensional CFD model

The Ahmed body [41] is a simplified vehicle geometry. Predicting the turbulent flow past this body –
and specifically, the highly separated turbulent flow behind it – is a benchmark problem in the automotive
industry. The specific instance adopted here has a 20◦ rear slant angle.
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For this application, all computations are performed in nondimensional form, for the free-stream
velocity v∞ = 60, the angle of attack α = 0◦, and the Reynolds number based on the vehicle length
Re = 4.29 × 106. As stated earlier, turbulence is modeled for this application using a DES approach
based on the one-equation Spalart-Allmaras turbulence model.

The chosen computational fluid domain Ω is shown in Figure 8. Specifically, the body is placed in
a box of a length of 7.5 body lengths (with the front of the body 2.4 body lengths away from the inlet
boundary), a width of 2.5 body widths, and a height of 4.1 body heights. Due to symmetry, only half
of the body is modeled: the other half is replaced by a symmetry plane. Hence, Ω is delimited by inlet
and outlet boundaries, a symmetry plane, and a ground plane.

The computational fluid domain is discretized by an unstructured mesh with 2,890,434 mesh nodes
and 17,017,090 tetrahedral elements. Adiabatic no-slip boundary conditions are applied on the wall
boundary of the body and on the ground. Reichardt’s law of the wall is used to model the flow immedi-
ately adjacent to these surfaces. The far-field boundary conditions are enforced on the inlet and outlet
boundaries using the Steger-Warming flux splitting method. The resulting semi-discrete HDM has the
dimension N = 17, 342, 604 (five conservative fluid variables and one turbulence-modeling variable per
mesh node). The unsteady flow simulation is initialized from the results of a quasi-steady simulation
performed using the same boundary conditions. Then, time-integration is performed in the time-interval
t ∈ [0, 0.2], using the constant time-step size ∆t = 8 × 10−5. Hence, this time-interval includes some
startup transients as well as a period of statistically stationary turbulent flow.

The HDM-based simulation is performed on 120 cores of the aforementioned Linux cluster: it requires
29.10 hrs wall-clock time to complete and therefore 3,490.43 hrs of CPU time. A snapshot of the predicted
flow is displayed in Figure 9 in the form of vorticity magnitude iso-surfaces colored by the local Mach
number.

For this application, the chosen QoIs are: the lift and drag coefficients of the body; and the streamwise
and vertical components of the flow velocity vector at a point in Ω located in the symmetry plane, half of
a body-length downstream of the body, and half of a body-height above the ground. The time-histories
of these QoIs are displayed in Figure 10.

Figure 8: Geometry of the Ahmed body and its computational fluid domain (one half of the body is modeled and symmetry
boundary conditions are specified in the symmetry plane).

22



Figure 9: Vorticity magnitude iso-surfaces colored by the local Mach number and computed around the Ahmed body
at t = 0.2 using: the HDM (top-left); a set of traditional state-local LSPG HPROMs based on traditional dense right
ROBs (top-right); and a counterpart set of LSPG HPROMs based on a set of sparse state-local right ROBs built using
the near-field/far-field domain decomposition heuristic.

Figure 10: Time-histories of four QoIs numerically predicted using various computational models (Ahmed body): lift
coefficient (top-left); drag coefficient (top-right); normalized streamwise component of the flow velocity vector at a probe
(bottom-left); and normalized vertical component of the flow velocity vector at the same probe (bottom-right).

5.2.2. Sparse state-local hyperreduced projection-based reduced-order model
The near-field/far-field heuristic described in Section 3.3.1 is applied to construct 10 sparse state-

local right ROBs and the corresponding set of local LSPG PROMs, for the DES of the flow past the
Ahmed body. It partitions the CFD mesh into the two nonoverlapping subdomains ΩNF and ΩFF shown
in Figure 11. The comparison of this figure with any part of Figure 9 shows that ΩNF contains the
regions of flow separation and vortex shedding.

A similarly accurate set of 10 traditional state-local right ROBs and the corresponding set of tradi-

23



Figure 11: Decomposition of the computational fluid domain around the Ahmed body into two nonoverlapping subdomains
using the near-field/far-field heuristic: ΩNF is shown in translucent red and ΩFF is shown in grey.

tional local LSPG PROMs are also built, for the purpose of performance comparisons. In both cases,
1,251 solution snapshots are collected at the sampling frequency implied by ∆ts = 1.6 × 10−4 in the
time-interval t ∈ [0, 0.2] – that is, every two time-steps of the HDM-based simulation.

In both cases:

• The snapshots are clustered into 10 clusters using the k-mean algorithm and 10% of the number of
snapshots assigned to each cluster are duplicated in its neighbors to create overlapping and promote
continuity of the piecewise affine approximation. All 10 state-local right ROBs are constructed
using SVD and the singular value energy criterion (10) with τ = 99.99%. In the case of the sparse
state-local right ROB, the construction strategy described in the bullet S1 of Section 3.2 is adopted
– that is, basis vectors are added to each component of the space-local ROB in order of decreasing
singular value until the singular value energy criterion is met with τ = 99.99%.

• Hyperreduction is performed using the ECSW method tailored for LSPG [9] and 17 evenly spaced
solution snapshots sampled at the frequency implied by ∆tH = 1.25 × 10−3 in the time-interval
t ∈ [0, 2× 10−1]. It transforms every LSPG PROM into a hyperreduced LSPG PROM (HPROM).
The reduced mesh built for the set of traditional state-local LSPG HPROMs associated with the
set of traditional state-local right ROBs is obtained using the tolerance ε = 1×10−3 in (17). That
constructed for the set of state-local LSPG HPROMs associated with the set of sparse state-local
right ROBs is obtained using two different tolerances: εNF = 1× 10−3 in ΩNF, where the solution
is expected to be feature-rich; and εFF = 1× 10−2 in ΩFF, where it is expected to be feature-poor.
Figure 12 shows both reduced meshes.

Figure 10 shows that both sets of state-local LSPG HPROMs deliver similar excellent levels of
accuracy, for all considered QoIs. The relative error results reported in Table 5 confirm this observation.

LSPG HPROM type RECL (%) RECD (%) REvx (%) REvz (%)
Traditional (dense) 5.0 0.60 3.1 4.7
Sparse state-local (near-field/far-field) 6.5 0.74 3.9 6.1

Table 4: Turbulent flow problem around the Ahmed body (DES): accuracy of the constructed nonlinear LSPG HPROMs.

Table 5 presents for each set of state-local LSPG HPROMs relevant dimensionality and sparsity data
averaged across all its state-local right ROBs. It shows that while on average, a sparse state-local right
ROB has an 18% higher dimension than a similarly accurate traditional state-local right ROB, it has
about 8% fewer nonzero entries per dof (nγ). More importantly, the ability to tune the ECSW threshold
in (17) to each specific subdomain Ωi, according to the feature richness/poorness of the solution in this
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Figure 12: ECSW-generated reduced meshes generated for: the set of traditional state-local LSPG PROMs associated
with the set of traditional state-local right ROBs; and the set of state-local LSPG PROMs associated with the set of sparse
state-local right ROBs (right).

subdomain, leads in this case to a reduced mesh for the set of state-local LSPG HPROMs associated
with the set of sparse state-local right ROBs that is almost twice smaller than its counterpart for the set
of traditional state-local LSPG HPROMs. This suggests a strong potential for sparse state-local right
ROBs to accelerate HPROM-based computations. This potential is confirmed by the results discussed
in the next section.

LSPG HPROM type navg γavg (nγ)avg Ñ
Traditional (dense) 113.7 1.000 113.70 3,793

Sparse state-local (near-field/far-field) 133.6 0.783 105.59 1,706

Table 5: Turbulent flow problem around the Ahmed body (DES): dimensions and sparsity of the constructed nonlinear
LSPG HPROMs.

5.2.3. Wall-clock performance results
Both state-local HPROM-based simulations are carried out on eight cores of the same Linux cluster:

their performance results are reported in Table 6. These results show that the set of traditional state-
local HPROMs completes the simulation 22.5 times faster than the HDM wall-clock time and consumes
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roughly 338 times less CPU time. The set of state-local HPROMs constructed using sparse state-local
right ROBs completes the simulation 34.8 times faster than the HDM – and therefore more than 1.5 times
faster than the counterpart set of traditional state-local HPROMs. Hence, the results reported in Table
6 highlight the potential of sparse state-local right ROBs to accelerate HPROM-based computations.

Computational model
Wall-clock
time (hrs)

CPU
time (hrs)

Wall-clock
speedup factor

CPU
speedup factor

HDM 29.00 3,490.80 – –
State-local HPROMs (traditional) 1.29 10.30 22.5 338.2
State-local HPROMs (sparse) 0.84 6.68 34.8 522.4

Table 6: Turbulent flow problem around the Ahmed body (DES): wall-clock time and CPU time performance results for
the nonlinear LSPG HPROMs.

6. Conclusions

In this paper, the concept of a space-local right reduced-order basis (ROB) is developed to introduce
sparsity in a projection-based reduced-order model (PROM) and accelerate its processing. This concept
relies on decomposing the computational domain into nonoverlapping subdomains, computing in each
subdomain an independent local ROB, and concatenating all local ROBs to construct a sparse right
ROB referred to as a space-local right ROB. This concept is compatible with both concepts of state-
local ROBs and hyperreduction, both of which are essential for nonlinear projection-based model order
reduction. It is shown in this paper that manual and simple as well as automated and sophisticated
domain decomposition strategies can be developed to implement the proposed concept. It is also shown
that this concept enhances the computational efficiency of hyperreduction, at least when it is performed
using the energy-conserving sampling and weighting (ECSW) method [6, 34, 9]. Most importantly, it
is shown that for a large-scale turbulent flow problem with O(106) degrees of freedom, the proposed
concept of a space-local right ROB and its integration with that of a state-local right ROB accelerate
the performance of a traditional nonlinear PROM by a factor 1.5. This is significant considering that a
traditional nonlinear PROM can itself accelerate the performance of a high-dimensional model by several
orders of magnitude.
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